Question Points
1. Fill in
the blank: A polynomial is ________ a binomial.
a. never
b. sometimes
c. always
1
2. Add 5y â
4 and 2y2 â 8y.
a. 2y2 â 3y â 4
b. 2y2 + 3y â 4
c. 7y2 â 12y â 4
d. 2y2 + 13y â 4
1
3.
Perform the indicated calculations. Write your result in
scientific notation.
a. 8 x 10â31
b. 8 x 10â3
c. 8 x 103
d. 8 x 1031
1
4. Write in
descending order and give the degree. 8 â x
a. x â 8; 1
b. x â 8; 0
c. âx + 8; 1
d. âx + 8; 0
1
5. Multiply.
(â4x + 1)2
a. â4×2 â 4x + 1
b. 16×2 â 4x + 1
c. 16×2 + 1
d. 16×2 â 8x + 1
1
6. Multiply.
â6x(â6x â 2)
a. 36×2 â 2x
b. 48×2
c. 36×2 + 12x
d. â36×2 + 12x
1
7. Simplify.
a.
b.
c.
d.
1
8. Write
using positive exponents and simplify, if possible. 3â2
a. â6
b. â9
c.
d. –
1
9. Simplify
and write your answer with only positive exponents.
a.
b.
c. a16
d. a3
.
1
10. Express
the number in scientific notation. The mass of a proton: 0.00000000000000000167
micrograms ()
a. 1.67 x 10â17
b. 1.67 x 10â18
c. 1.67 x 1017
d. 1.67 x 1020
0
11.
Classify the following as a monomial, binomial or trinomial,
where possible.
a. Monomial
b. Binomial
c. Trinomial
d. Not a polynomial
1
12. The
diameter of the Milky Way disc is approximately 9 x 1020 meters. How long does
it take light, traveling at 1016 m/year to travel across the diameter of the
Milky Way?
a. 900,000 years
b. 90,000 years
c. 9,000 years
d. 900 years
1
13. Evaluate
(assume x 0). â4×0
a. 0
b. 1
c. â4
d. â4x
1
14. Evaluate
âx2 â 7x + 7 for x = 4.
a. â37
b. 19
c. â51
d. â5
0
15. Remove the
parentheses and simplify. 3y â (â7y â 6x)
a. 10y + 6x
b. 10y â 6x
c. â4y + 6x
d. â4y â 6x
1
16. Simplify.
Write your answer with positive exponents only.
a. a6b6c2
b.
c. a18b17c2
d.
1
17. Divide.
a. 9a3b8
b. 40a2b5
c. 9a2b5
d. 40a3b8
1
18. Classify
the following as a monomial, binomial or trinomial, where possible. 3×2 â 9xy +
y2
a. Monomial
b. Binomial
c. Trinomial
d. Not classified
1
19. Subtract
6×2 â 2x + 8 from 10×2 â 10x + 3.
a. 4×2 â 12x + 11
b. 4×2 â 12x â 5
c. 4×2 â 8x â 5
d. 4×2 â 8x + 11
1
20. Divide.
a.
b.
c.
d.